Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 10(37): 31594-31602, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30136839

RESUMO

The utilization of edge sites in two-dimensional materials including transition-metal dichalcogenides (TMDs) is an effective strategy to realize high-performance gas sensors because of their high catalytic activity. Herein, we demonstrate a facile strategy to synthesize the numerous edge sites of vertically aligned MoS2 and larger surface area via SiO2 nanorod (NRs) platforms for highly sensitive NO2 gas sensor. The SiO2 NRs encapsulated by MoS2 film with numerous edge sites and partially vertical-aligned regions synthesized using simple thermolysis process of [(NH4)2MoS4]. Especially, the vertically aligned MoS2 prepared on 500 nm thick SiO2 NRs (500MoS2) shows approximately 90 times higher gas-sensing response to 50 ppm NO2 at room temperature than the MoS2 film prepared on flat SiO2, and the theoretical detection limit is as low as ∼2.3 ppb. Additionally, it shows reliable operation with reversible response to NO2 gas without degradation at an operating temperature of 100 °C. The use of the proposed facile approach to synthesize vertically aligned TMDs using nanostructured platform can be extended for various TMD-based devices including sensors, water splitting catalysts, and batteries.

2.
ACS Appl Mater Interfaces ; 10(1): 1050-1058, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29235841

RESUMO

The utilization of p-p isotype heterojunctions is an effective strategy to enhance the gas sensing properties of metal-oxide semiconductors, but most previous studies focused on p-n heterojunctions owing to their simple mechanism of formation of depletion layers. However, a proper choice of isotype semiconductors with appropriate energy bands can also contribute to the enhancement of the gas sensing performance. Herein, we report nickel oxide (NiO)-decorated cobalt oxide (Co3O4) nanorods (NRs) fabricated using the multiple-step glancing angle deposition method. The effective decoration of NiO on the entire surface of Co3O4 NRs enabled the formation of numerous p-p heterojunctions, and they exhibited a 16.78 times higher gas response to 50 ppm of C6H6 at 350 °C compared to that of bare Co3O4 NRs with the calculated detection limit of approximately 13.91 ppb. Apart from the p-p heterojunctions, increased active sites owing to the changes in the orientation of the exposed lattice surface and the catalytic effects of NiO also contributed to the enhanced gas sensing properties. The advantages of p-p heterojunctions for gas sensing applications demonstrated in this work will provide a new perspective of heterostructured metal-oxide nanostructures for sensitive and selective gas sensing.

3.
Adv Mater ; 29(15)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28117501

RESUMO

Graphene oxide (GO) is reduced spontaneously when palladium nanoparticles are decorated on the surface. The oxygen functional groups at the GO surface near the nanoparticles are absorbed to the palladium to produce a palladium oxide interlayer. Palladium therefore grows on the GO with preferred orientations, resulting in unique microstructural and electrical properties.

4.
ACS Nano ; 9(4): 4146-55, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25797593

RESUMO

Metal sulfides (MeS2) such as MoS2 and WS2 were used as charge transport layers in organic light-emitting diodes (OLEDs) and organic photovoltaic (OPV) cells in order to enhance the stability in air comparing to poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PEDOT: PSS). MeS2 layers with a polycrystalline structure were synthesized by a chemical deposition method using uniformly spin-coated (NH4)MoS4 and (NH4)WS4 precursor solutions. The ultraviolet-ozone (UV-O3) treatment on MeS2 leads to the removal of the surface contaminants produced by the transfer process, resulting in a uniform surface and an increase of the work function. The maximum luminance efficiencies of the OLEDs with UV-O3-treated MoS2 and WS2 were 9.44 and 10.82 cd/A, respectively. The power conversion efficiencies of OPV cells based on UV-O3-treated MoS2 and WS2 were 2.96 and 3.08%, respectively. These values correspond to over 95% of those obtained with ( PEDOT: PSS) based devices. Furthermore, OLEDs and OPV cells based on MeS2 showed two to six times longer stability in air compared with PEDOT: PSS based devices. These results suggest that UV-O3-surface-treated MeS2 could be a promising candidate for a charge transport layer in optoelectronic devices.

5.
ACS Appl Mater Interfaces ; 6(17): 14779-84, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25157784

RESUMO

Vertically ordered nanotube array is a desirable configuration to improve gas sensing properties of the hematite which is the most abundant and cheapest metal oxide semiconductor on earth but has low and sluggish chemiresistive responses. We have synthesized a vertically aligned, highly ordered hematite nanotube array directly on a patterned SiO2/Si substrate and then it used as a gas sensor without additional processing. The nanotube array sensor shows unprecedentedly ultrahigh and selective responses to acetone with detection limits down to a few parts per billion and response time shorter than 3 s.

6.
Small ; 9(13): 2255-9, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23401192

RESUMO

Highly localized dislocations in GaN/ZnO hetero-nanostructures are generated from the residual strain field by lattice mismatches at two interfaces: between the substrate and hetero-nanostructures, and between the ZnO core and GaN shell. The local strain field is measured using tranmission electron microscopy, and the relationship between the nanostructure morphology and the highly localized dislocations is analyzed by a finite element method.

7.
J Nanosci Nanotechnol ; 12(2): 1645-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22630020

RESUMO

We demonstrated the successful growth of catalyst-free InN nanorods on (0001) Al2O3 substrates using metal-organic chemical vapor deposition. Morphological evolution was significantly affected by growth temperature. At 710 degrees C, complete InN nanorods with typical diameters of 150 nm and length of approximately 3.5 microm were grown with hexagonal facets. theta-2theta X-ray diffraction measurement shows that (0002) InN nanorods grown on (0001) Al2O3 substrates were vertically aligned along c-axis. In addition, high resolution transmission electron microscopy indicates the spacing of the (0001) lattice planes is 0.28 nm, which is very close to that of bulk InN. The electron diffraction patterns also revealed that the InN nanorods are single crystalline with a growth direction along (0001) with (10-10) facets.

8.
J Biomed Mater Res B Appl Biomater ; 100(2): 321-30, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22102608

RESUMO

Nanofibrous membranes, consisting of a poly(L-lactic acid) (PLLA)-silica xerogel hybrid material, were successfully fabricated from a hybrid sol using the electrospinning technique for guided bone regeneration (GBR) application. These hybrid nanofibers exhibited a homogeneous and continuous morphology, with a nano-sized dispersed silica xerogel phase in the PLLA fiber matrix. The mechanical properties, such as the tensile strength and the elastic modulus, were improved as the silica xerogel content increased up to 40%. All of the hybrid membranes exhibited highly hydrophilic surfaces and good proliferation levels. After culturing for 13 days, the cells that were cultured on the hybrid membranes exhibited a significantly higher ALP activity compared to the pure PLLA membrane. Moreover, the in vivo animal experiments that used the rat calvarial defect model revealed a remarkably improved bone regeneration ability for the hybrid membrane compared to pure PLLA. These results demonstrated the feasibility of these hybrid membranes for efficient GBR.


Assuntos
Regeneração Óssea , Regeneração Tecidual Guiada/métodos , Ácido Láctico/química , Membranas Artificiais , Nanocompostos/química , Polímeros/química , Dióxido de Silício/química , Animais , Feminino , Camundongos , Poliésteres , Ratos , Ratos Sprague-Dawley
9.
Nanotechnology ; 22(20): 205602, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21444965

RESUMO

We report on the fabrication of high-quality GaN on soda-lime glass substrates, heretofore precluded by both the intolerance of soda-lime glass to the high temperatures required for III-nitride growth and the lack of an epitaxial relationship with amorphous glass. The difficulties were circumvented by heteroepitaxial coating of GaN on ZnO nanorods via a local microheating method. Metal-organic chemical vapor deposition of ZnO nanorods and GaN layers using the microheater arrays produced high-quality GaN/ZnO coaxial nanorod heterostructures at only the desired regions on the soda-lime glass substrates. High-resolution transmission electron microscopy examination of the coaxial nanorod heterostructures indicated the formation of an abrupt, semicoherent interface. Photoluminescence and cathodoluminescence spectroscopy was also applied to confirm the high optical quality of the coaxial nanorod heterostructures. Mg-doped GaN/ZnO coaxial nanorod heterostructure arrays, whose GaN shell layers were grown with various different magnesocene flow rates, were further investigated by using photoluminescence spectroscopy for the p-type doping characteristics. The suggested method for fabrication of III-nitrides on glass substrates signifies potentials for low-cost and large-size optoelectronic device applications.

10.
Nanotechnology ; 22(5): 055205, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21178253

RESUMO

We report the fabrication and electrical characteristics of scalable nanowall network devices and their gas sensor applications. For the network device fabrications, two-dimensional ZnO nanowall networks were grown on AlN/Si substrates with a patterned SiO(2) mask layer using selective-area metal-organic vapor-phase epitaxy. The ZnO nanowalls with c-axis orientation were heteroepitaxially grown on AlN/Si substrates, and were single-crystalline, as determined by x-ray diffraction and transmission electron microscopy. The electrical conductivity of the nanowall networks was measured as a function of nanowall dimensions. The conductance increased linearly with the channel width for widths larger than 1 µm, but saturated at 36 µS for widths below 1 µm. This conductance scaling behavior is explained by enhanced conduction through the regions near the edge of the patterned growth areas, where the density of the networks was higher. Gas sensor applications were investigated using the nanowall network devices, and highly sensitive gas detection was demonstrated.

11.
Nanotechnology ; 21(26): 265603, 2010 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-20534891

RESUMO

We report morphology-controlled selective growth of ZnO nanostructures on glass substrates by using catalyst-free metal-organic chemical vapor deposition. For the morphology-controlled selective growth, a microheating method using a series of microheaters was developed, which provided well-controlled local heating based on the microheater geometry and spatial arrangement. ZnO nanostructure morphology depended on the local growth temperature, so various nanostructure morphologies were obtained selectively at specific positions on glass substrates by using local microheating. The monolithic integration of nanostructures with different morphologies will have great potential for applications in multifunctional devices.

12.
Nat Nanotechnol ; 5(2): 148-53, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20081847

RESUMO

Resistance switching in metal oxides could form the basis for next-generation non-volatile memory. It has been argued that the current in the high-conductivity state of several technologically relevant oxide materials flows through localized filaments, but these filaments have been characterized only indirectly, limiting our understanding of the switching mechanism. Here, we use high-resolution transmission electron microscopy to probe directly the nanofilaments in a Pt/TiO(2)/Pt system during resistive switching. In situ current-voltage and low-temperature (approximately 130 K) conductivity measurements confirm that switching occurs by the formation and disruption of Ti(n)O(2n-1) (or so-called Magnéli phase) filaments. Knowledge of the composition, structure and dimensions of these filaments will provide a foundation for unravelling the full mechanism of resistance switching in oxide thin films, and help guide research into the stability and scalability of such films for applications.


Assuntos
Eletroquímica/métodos , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Óxidos/química , Titânio/química , Cristalização , Condutividade Elétrica , Análise de Fourier , Microscopia Eletrônica de Transmissão , Propriedades de Superfície
13.
Nanotechnology ; 21(5): 055303, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20051614

RESUMO

We studied the fabrication and field-emission characteristics of position-controlled AlN/ZnO nanotube heterostructure arrays. AlN layers with various thicknesses from 20 to 52 nm were deposited coaxially on the position-controlled ZnO nanotube arrays. The field-emission properties of the coaxial AlN/ZnO nanotube arrays were controlled using the AlN thickness and the nanotube interdistance. As compared to the bare ZnO nanotube arrays, the AlN-coated coaxial nanotube arrays exhibited enhanced electron emission, and the optimum AlN coating layer thickness on the nanotube tips was 26 nm. The improved field emission from the coaxial nanotube heterostructures is attributed to the low electron affinity and the thickness modulation effect of the AlN coating layer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...